Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition

For this definition we assume that

Unit circle definition

For this definition θ is any angle.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{1}=y & \csc \theta=\frac{1}{y} \\
\cos \theta=\frac{x}{1}=x & \sec \theta=\frac{1}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

$\sin \left(30^{\circ}\right)=\frac{1}{2}$
$\operatorname{Cos}\left(30^{\circ}\right)=\frac{\sqrt{3}}{2} \quad \operatorname{Tan}\left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$ $\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
$\operatorname{Cos}\left(60^{\circ}\right)=\frac{1}{2}$
$\operatorname{Tan}\left(60^{\circ}\right)=\sqrt{3}$

$\operatorname{Sin}\left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \quad \operatorname{Cos}\left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \quad \operatorname{Tan}\left(45^{\circ}\right)=1$

Carpenter's 3-4-5 triangle for confirming a right angle. Measure \& mark 4 and 3 feet (meters) out from a corner. Measure between the marks ... when it's 5 , you have a right angle.

Formulas and Identities

Tangent and Cotangent Identities

$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}$
Reciprocal Identities
$\csc \theta=\frac{1}{\sin \theta}$
$\sin \theta=\frac{1}{\csc \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
Pythagorean Identities
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Even/Odd Formulas

$\sin (-\theta)=-\sin \theta$	$\csc (-\theta)=-\csc \theta$
$\cos (-\theta)=\cos \theta$	$\sec (-\theta)=\sec \theta$
$\tan (-\theta)=-\tan \theta$	$\cot (-\theta)=-\cot \theta$

Periodic Formulas

If n is an integer.
$\sin (\theta+2 \pi n)=\sin \theta \quad \csc (\theta+2 \pi n)=\csc \theta$
$\cos (\theta+2 \pi n)=\cos \theta \quad \sec (\theta+2 \pi n)=\sec \theta$
$\tan (\theta+\pi n)=\tan \theta \quad \cot (\theta+\pi n)=\cot \theta$
Double Angle Formulas
$\sin (2 \theta)=2 \sin \theta \cos \theta$
$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

$$
=2 \cos ^{2} \theta-1
$$

$$
=1-2 \sin ^{2} \theta
$$

$\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

$$
\frac{\pi}{180}=\frac{t}{x} \quad \Rightarrow \quad t=\frac{\pi x}{180} \quad \text { and } \quad x=\frac{180 t}{\pi}
$$

Half Angle Formulas
$\sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta))$
$\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$
$\tan ^{2} \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}$
Sum and Difference Formulas
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
Product to Sum Formulas
$\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
$\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
$\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
$\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]$
Sum to Product Formulas
$\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
$\sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
$\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
$\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

Cofunction Formulas

$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \quad \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
$\csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta \quad \sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta$
$\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta \quad \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta$

